
Binghamton

University

CS-220

Spring 2016

The CS-220 Development
Environment

(No relevant sections in text)

Binghamton

University

CS-220

Spring 2016

Picking the right tool for the job

2

Binghamton

University

CS-220

Spring 2016

Integrated Development Environment

3

Binghamton

University

CS-220

Spring 2016

Command Line Mentality

Old fashioned but…

…surprisingly efficient…

… (except for editing).

Binghamton

University

CS-220

Spring 2016

Command Line Mentality
• Artisan vs. Factory Worker

• Learn to use lots of tools

• May be slower

• Take more knowledge

• Require more effort

• Tools you can take with you

• Tools universally available

• Applicable to wide variety of
projects

5

Binghamton

University

CS-220

Spring 2016

Picking the Right Tool for the Job

Binghamton

University

CS-220

Spring 2016

Operating System: UNIX

• Oldest “modern” operating system

• Base for Linux, HP/UX, Solaris, AIX, Android, etc.

• Most widely used

• Available on Lab accounts

• Free version available on Windows : CYGWIN
(https://www.cygwin.com/)

• Large library of free software - GNU compilers, editors, debuggers, etc.
(http://en.wikipedia.org/wiki/GNU)

• Assume basic knowledge of UNIX
(http://www.ee.surrey.ac.uk/Teaching/Unix)

https://www.cygwin.com/
http://en.wikipedia.org/wiki/GNU
http://www.ee.surrey.ac.uk/Teaching/Unix

Binghamton

University

CS-220

Spring 2016

WARNING: Not All UNIX is the same!

You may use:
Cygwin, virtual box, linux laptops, PODS linux, etc.

for labs, homework, projects, study, etc.

• Be aware – each UNIX installation is slightly different!
• If you have a technical problem, you are on your own!
• Grading will be performed on CS “LDAP” machines!

• “It worked on my laptop” is not a valid excuse

• Test on LDAP machines!
• Use the lab(s) when no labs are running
• Access remotely with PUTTY

Binghamton

University

CS-220

Spring 2016

Basic Commands

• Editor – gedit (not available everywhere)

• Compiler / Linker – gcc

• Build manager – make

• Debugger - gdb

Binghamton

University

CS-220

Spring 2016

Editor - gedit

• Hybrid command line / Graphical User Interface (GUI)

• First invocation from command line starts GUI
• Suggest “gedit myfile.c &” first time – otherwise, hangs up terminal

window until gedit is closed

• Once gedit is running, successive “gedit” commands send
messages to existing GUI

• Recommend Edit/Preferences/
• View - Display line numbers

• View - Highlight matching brackets

• Editor - Create a backup copy of files before saving

Binghamton

University

CS-220

Spring 2016

The compile / link process

myfile.c

Translate
to x86

Assembler
myfile.s

Translate
machine

object
language

myfile.o
Pre-

processor

myfile.h

stdlib.h

libstdlib.so

linker

executable

Binghamton

University

CS-220

Spring 2016

GCC (Gnu C Compiler)

• gcc <options> <source>

• Basic options:
• -o <output file name / command name>

• -g [include debug information in output file]

• -Wall [turn on all warning messages]

• For example: gcc –g –Wall –o executable myfile.c

• For more detail, gcc –- help or man gcc

• Complete documentation: https://gcc.gnu.org/onlinedocs/

https://gcc.gnu.org/onlinedocs/

Binghamton

University

CS-220

Spring 2016

• File that tells “make” what to do and how to do it

• Composed of a list of “make rules”

• A rule has three parts:
• Target – the file that this rule produces

• Pre-requisite files – A list of file used to make the target

• Recipe – Unix command(s) to produce target from the pre-requisite files

• For example:

mymain : mymain.c mymain.h comp.c comp.h

gcc –g –Wall -o mymain mymain.c comp.c

Makefile

Required Tab

Binghamton

University

CS-220

Spring 2016

Example Makefile

mycmd : mymain.c mymain.h comp.c comp.h

gcc –g –Wall –o mycmd mymain.c comp.c

test : mycmd

mycmd “test string”

mycmd “test string 2”

clean:

-rm mycmd

Binghamton

University

CS-220

Spring 2016

Invoking make

• Command : make <target>

• If <target> not specified, look for target “all”

• If <target> not specified and no “all” target, make first target in
the make file

Binghamton

University

CS-220

Spring 2016

Make processing (simplified)

• Find the rule for the target specified

• Make all dependencies for that rule
• At least those that show up as targets

• If any dependencies are newer than target file, invoke recipe

Binghamton

University

CS-220

Spring 2016

Make process (flowchart)

Target
in file?

For Each
Dependency

Depend.
target?

make
dependency

Depend. >
Target?

run
recipe

DONE

ERROR

Yes

Yes
Yes

No

No

No more

No

TARGET
For Each

Dependency

No more

Error? ABORT
No Yes

Binghamton

University

CS-220

Spring 2016

Example Make internals

mycmd : mymain.c mymain.h comp.c comp.h

gcc –o mycmd mymain.c comp.c

test : mycmd

mycmd “test string”

mycmd “test string 2”

clean:

-rm mycmd

~> make test

// dependency mycmd is a target

// make mycmd

// dependency mymain.c not a target

// dependency mymain.h not a target

// dependency comp.c not a target

// dependency comp.h not a target

// mymain.c older than mycmd

// mymain.h older than mycmd

// comp.c older than mycmd

// comp.h newer than mycmd

// run gcc –o mycmd mymain.c comp.c

// mycmd is newer than “test”

// run mycmd “test string”

// run mycmd “test string 2”

Binghamton

University

CS-220

Spring 2016

Phony Targets

• Targets for which there is no corresponding file
• For example: clean & test
• When recipe is invoked, it does not create the dependency file!

• Recipe invoked each time target is specified
• If make cannot find the target file, it assumes its date is ancient
• Therefore, the phony “target file” is ALWAYS “older” than dependencies
• Note that dependencies are still made… “make test” will “make mycmd”

• make mycmd
• will run gcc –o mycmd only if mycmd is older than its dependencies

• make test
• will run mycmd “test string” and mycmd “test string 2” EVERY time

Binghamton

University

CS-220

Spring 2016

Make Errors

• What are errors in make?
• Compile Errors
• Test Failed
• etc.

• How does make know there was a problem?
• If recipe returns a non-zero return code, there was a problem
• Unless recipe is preceded by “-” which indicates ignore non-zero rc

• For example make clean often performs commands like “rm mycomp.o”
• If mycomp.o does not exist, rm returns non-zero rc
• therefore, typically we use “-rm mycomp.o” for make clean

• Useful to stop make when there is a problem

Binghamton

University

CS-220

Spring 2016

Example make file with multiple tests

test : test1 test2 test3

test1 : mycmd

mycmd testfile1.txt

test2 : mycmd

mycmd testfile2.txt

test3 : mycmd

mycmd testfile3.txt

mycmd : mycmd.c mycmd.h comp.c comp.h

gcc –g –o mycmd mycmd.c comp.c

• Run “make” or “make test” to run all tests
• make will build mycmd if you have changed

source files
• make will stop with an error if compile failed
• make will run test1
• make will stop with an error if test1 fails
• make will run test2
• make will stop with an error if test2 fails
• make will run test3
• make will stop with an error if test3 fails

• If test2 fails
• change the code to fix the problem
• run “make test2” to see if that problem is fixed
• then run “make test” to run all tests

Binghamton

University

CS-220

Spring 2016

Typical Targets

• all - all executables required

• clean - remove all built files

• test – test all executables built

• install - any commands required to make executables generally
available

Binghamton

University

CS-220

Spring 2016

Make Concepts

• Build a product from components
• Standardize the build process

• Make it repeatable - make builds the same way every time

• Rebuild only components that have changed
• As long as dependencies are correct, make will build exactly what is

needed – and no more

• Package complex commands using simple targets
• clean, test, debug – all may be sophisticated commands

• invoke as “make test”

Binghamton

University

CS-220

Spring 2016

Debugging – GDB (Gnu DeBugger)
• gdb <executable>

• Starts debugger
• Loads executable
• Prompts for gdb commands

• Basic GDB commands:
• h[elp] – help on gdb commands
• b[reak] <location> – set a breakpoint at the specified location

• Location can be either a line number in a file or a function name

• run <command arguments> - invoke command and run to next breakpoint
• c[ontinue] – continue to next breakpoint
• s[tep] – run next program instruction, stepping into function invocations
• n[ext] – run next program instruction, skipping over function invocations
• p[rint] <variable or expression> - print the current value of variable
• x <options> <location> - print (examine) memory at locations
• q[uit] – exit out of gdb

Binghamton

University

CS-220

Spring 2016

GDB hints

• gdb –x gdbcmds.txt mycommand
• Runs command from gdbcmds.txt before prompting
• Useful when you have lots of breakpoints and/or complicated parameters

• Null gdb command same as “repeat previous”
• E.g. “step” <enter> <enter> to step 3 instructions

• If you see a prompt like:

Breakpoint 1, 0x00000001004010d8 in main ()
You forgot to compile with –g

• Prompt shows the line of C code ABOUT to execute

• Documentation:
http://www.gnu.org/software/gdb/documentation/

http://www.gnu.org/software/gdb/documentation/

